
COL7160 : Quantum Computing
Lecture 2: Qubits

Instructor: Rajendra Kumar Scribe: Poojan Shah

1 Mathematical Notation
We represent vectors over Cd using the braket1 or the Dirac notation. A “ket” |·⟩ represents a d-dimensional column
vector in the vector space over complex number Cd :

|v⟩ =


v0
v1
...

vd−1


⟨v| =

(
v∗0 , v

∗
1 , . . . , v

∗
d−1

)
Similarly, a “bra” represents a d-dimensional row vector equal to the complex conjugate of the corresponding ket. We
can keep this in mind by writing ⟨·| = (|·⟩∗)⊤, or equvalently by writing ⟨·| = |·⟩†. Here, † is called the Hermitian
dagger and it represents the conjugate transpose. For any vector |u⟩ ∈ Cd we have ⟨u| = (|u⟩∗)⊤ = |u⟩†. For
matrices we write A† = (A∗)⊤.
An inner product on the complex vector space Cd is a map ⟨·|·⟩ : Cd × Cd → C satisfying the following properties
for all |u⟩ , |v⟩ , |w⟩ ∈ Cd and all α ∈ C:

1. ⟨u|v⟩ = ⟨v|u⟩∗

2. ⟨u|αv + w⟩ = α ⟨u|v⟩+ ⟨u|w⟩ .

3. ⟨v|v⟩ ≥ 0, with equality if and only if |v⟩ = 0.

Let |v1⟩ = (a1, . . . , ad)
⊤ and |v2⟩ = (b1, . . . , bd)

⊤. Then the standard inner product on Cd is defined by

⟨v1|v2⟩ =
d∑

i=1

a∗i bi.

This can be equivalently written as ⟨v1|v2⟩ = |v1⟩† |v2⟩. Using the inner product, we can define the length or norm

of a ket |v⟩ = (v0, . . . , vd)
⊤ as ∥ |v⟩ ∥2 :=

√
⟨v|v⟩ =

√∑d
i=1 v

∗
i vi =

√∑d
i=1 |vi|2. if ∥ |v⟩ ∥ = 1, we say that |v⟩ is

normalized.

Example 1. If |v⟩ = (1− i, 0)⊤ and |w⟩ = (2i, 3)⊤ then ⟨v|w⟩ = −2 + 2i.

Example 2. If |v⟩ = 1
2 (1 + i, 1− i)⊤ then ∥ |v⟩ ∥2 = 1.

We will use the notation |j⟩ ∈ Cd for j ∈ {0, 1, . . . , d − 1} to denote the computational basis vectors, defined by
|j⟩ = (0, . . . , 0, 1, 0, · · · , 0)⊤ where the entry 1 appears in the j-th position and all other entries are zero. Notice
that {|0⟩ , |1⟩ , . . . , |d− 1⟩} forms an orthonormal basis of Cd, satisfying ⟨i|j⟩ = δij . Hence, every vector |v⟩ ∈ Cd

can be written uniquely as a linear combination of these basis vectors:

|v⟩ =
d−1∑
j=0

vj |j⟩ ,

where vj = ⟨j|v⟩ denotes the j-th coordinate of |v⟩ in the computational basis.
1Recall that in high-school physics we used the ·⃗ to denote vectors such as F⃗ = ma⃗ or E⃗ = q

4πε0

r⃗
∥r⃗∥3 . The braket notation can be thought

of as a fancy way of doing the same thing
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2 Quantum Bits
Classically, a bit takes values in {0, 1}. We represent classical bits using vectors in C2 by identifying

0 ←→ |0⟩ =
(
1
0

)
, 1 ←→ |1⟩ =

(
0
1

)
.

A quantum bit or qubit can be in any state of the form

|ψ⟩ = α |0⟩+ β |1⟩ ,

where α, β ∈ C satisfy
|α|2 + |β|2 = 1.

The complex numbers α and β are called the amplitudes of the qubit.

Thus, a qubit is a normalized vector in C2. We therefore identify the state space of a qubit with C2.

Example 3. The states

|+⟩ := 1√
2
(|0⟩+ |1⟩), |−⟩ := 1√

2
(|0⟩ − |1⟩)

are valid qubit states.

Notice that |0⟩ and |1⟩ are orthonormal and form a basis for C2. This basis is called the standard basis or the com-
putational basis of C2. There are many other orthonormal bases for C2. One important example is the Hadamard
basis

H = {|+⟩ , |−⟩}.

Example 4. Verify that |+⟩ and |−⟩ form an orthonormal basis of C2.

Exercise 1. Express |1⟩ in the Hadamard basis, i.e., find α, β such that

|1⟩ = α |+⟩+ β |−⟩ .

3 MultipleQubits
Classically, the state of two bits is given by a string in {00, 01, 10, 11}. Quantum mechanically, the state of two
qubits lives in the vector space

C2 ⊗ C2 ∼= C4.

The computational basis for two qubits is

{|00⟩ , |01⟩ , |10⟩ , |11⟩},

where

|00⟩ ==


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1

 .

A pure state of two qubits is any normalized vector of the form

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ ,

where αij ∈ C and ∑
i,j∈{0,1}

|αij |2 = 1.
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More generally, a pure state of n qubits is a unit vector in

(C2)⊗n ∼= C2n ,

and can be written as
|ψ⟩ =

∑
x∈{0,1}n

αx |x⟩ ,
∑

x∈{0,1}n

|αx|2 = 1.

The vectors {|x⟩ : x ∈ {0, 1}n} form the computational basis for n qubits.

Tensor Product
If

|ψ⟩ =


ψ1

ψ2

...
ψm

 , |φ⟩ =


φ1

φ2

...
φn

 ,

then their tensor product is

|ψ⟩ ⊗ |φ⟩ =



ψ1φ1

ψ1φ2

...
ψ1φn

ψ2φ1

...
ψmφn


∈ Cmn.

Let
|ψA⟩ = α0 |0⟩+ α1 |1⟩ , |ψB⟩ = β0 |0⟩+ β1 |1⟩ .

The joint state of the two systems is given by the tensor product

|ψA⟩ ⊗ |ψB⟩ = α0β0 |00⟩+ α0β1 |01⟩+ α1β0 |10⟩+ α1β1 |11⟩ .

If |u⟩ ∈ Cd1 and |v⟩ ∈ Cd2 , then
|u⟩ ⊗ |v⟩ ∈ Cd1d2 .

The tensor product satisfies the following properties:

1. Distributivity:
|u⟩ ⊗ (|v⟩+ |w⟩) = |u⟩ ⊗ |v⟩+ |u⟩ ⊗ |w⟩ .

2. Associativity:
(|u⟩ ⊗ |v⟩)⊗ |w⟩ = |u⟩ ⊗ (|v⟩ ⊗ |w⟩).

Note that, in general,
|u⟩ ⊗ |v⟩ ̸= |v⟩ ⊗ |u⟩ ,

so the tensor product is not commutative.
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Entanglement
Example 5 (EPR / Bell state). The state

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

is called an EPR pair or a Bell state.

Example 6. Let

|ψ⟩ = 1√
2
(|+⟩ |+⟩+ |−⟩ |−⟩).

Then
|ψ⟩ = 1√

2
(|00⟩+ |11⟩),

which is an EPR pair.

Exercise 2. Show that the EPR state 1√
2
(|00⟩+ |11⟩) cannot be written as a tensor product of two single-qubit states.
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